Electronic

Codisplay parallel 60 mm with 2 , 3 or 4 LED digits

Art. No 190162, 190163, 190164

- 60 mm LED digits
- Display colour red
- Assembled in ABS enclosure
- Protection degree IP54
- IP65 on request
- BCD parallel interface,
- PLC compatible interface
- 8-bit operation, optional 4-bit

Figure 1: Art. No 190164 P

Contents

1 Hardware 1

1.1 Ordering information 1
1.2 Technical specifications 1
1.3 Dimensions and mounting 2
1.4 Pin assignment 3
1.5 Jumpers 3
1.6 Indicator numbering 3

2 Control and data bytes 3
2.1 Data byte 3
2.2 Character set 4
2.3 Control Byte 4
2.4 Display brightness control 4

3 Data transfer 5
3.1 Control signals 5
3.2 8-bit-Bus 5
3.3 4-bit-Bus 5
3.4 Timing diagram 5

4 CE Conformity and RoHS 5
5 Examples 6

1 Hardware
1.1 Ordering information

Description	Digits	Article No	
Display, free mounting	2	190162 F	1)
Display, panel mounting	2	190162 P	$2)$
Display, free mounting	3	190163 F	1)
Display, panel mounting	3	190163 P	$2)$
Display, free mounting	4	190164 F	$1)$
Display, panel mounting	4	190164 P	$2)$
Option			
Bending arm	$2,3,4$	on request	

Standard accessories:

1) Mounting brackets
2) Fixing set for panel mounting

1.2 Technical specifications

Display	LED, 7 segment
Type	60 mm
Character size	red Colour Character set special characters
Brightness	presettable
Power supply	
Supply voltage	$18-30 \mathrm{VDC}$
Supply current at	
$24 \mathrm{VDC}, 4$ digits with PWM 2%	max. 40 mADC
$24 \mathrm{VDC}, 4$ digits with PWM 50%	max. 100 mADC
$24 \mathrm{VDC}, 4$ digits with PWM 98%	max. 135 mADC
Digital inputs	$<2.5 \mathrm{VDC}$
log 0	$>15 \mathrm{VDC}$
log 1	$0-30 \mathrm{VDC}$
Maximum voltage	$>10 \mathrm{kOhm}$
Input impedance	
Environment	$0-50^{\circ} \mathrm{C}$
Operating temperature range	$0-90 \% \mathrm{rH}$
Humidity	$0-70^{\circ} \mathrm{C}$
Storage temperature range	

Enclosure	2 Digit	3 Digit	4 Digit
Enclosure material	ABS/Steel		
Colour	Black or customer-specific		
Ingress protection front	IP54, IP65 on request		
Ingress protection rear	IP40		
Approximate weight [g] Free mounting type	540	740	920
Panel mounting type	480	670	840

1.3 Dimensions and mounting

Figure 2: Enclosure and character dimensions

Figure 3: Mounting dimensions

Figure 4: Enclosure depth

Enclosure dimensions in mm	2 Digit	3 Digit	4 Digit	
Width	W	136	193	250
Height	H	100	100	100
Depth	D	45	45	45
Depth over all	DA	51	51	51
Height of display Width of display	HD	60	60	60
Panel mounting:	100	157	215	
Enclosure depth behind front (without connector)	DP	40	40	40

Mounting dimensions in mm	2 Digit	3 Digit	4 Digit	
Distance of mounting holes	A	150	207	264
Distance of mounting holes Width over all	B	50	50	50
Position of the Connector	E	160	217	274
Distance of mounting screws	F	110	167	224

Panel cut out dimensions in mm	2 Digit	3 Digit	4 Digit	
Width of cut out	WC	131	188	245
Height of cut out	HC	95	95	95

Figure 5: Panel cut out for panel mounting type

Electronic

Figure 6: Panel mounting type

Figure 7: Free mounting type

1.4 Pin assignment

Pin	Function	8-bit bus	4-bit bus
14-25	Power supply 1)	0 V	0 V
10, 13		+24V	+24V
1	Signal GND	GND	GND
2	Data ports	DI 0	-- 2)
3		DI 1	-- 2)
4		DI 2	-- 2)
5		DI 3	-- 2)
6		DI 4	DI 4
7		DI 5	DI 5
8		DI 6	DI 6
9		DI 7	DI 7
11	Chip select	CS	CS
12	Data-/controlregister select	RS	RS 2)

Table 1: Connector for power and signals
D-Sub 25 pins / male
Notes:

1) The power supply input is protected against improper connection.
2) Not used pins have to be connected to GND.
1.5 Jumpers

Figure 8: Jumpers

Jumper	Function	no jumper or open	Jumper set
JP1	Indicator test	Normal operation	Test 1)
JP2	Bus select	8-bit	4-bit

Table 2: Jumper functions

1) Indicator Test: All segments and decimal points are lit with full brightness.

1.6 Indicator numbering

Data entry mode	P6	Digit address			
Right to left	0	3	2	1	0
Left to right	1	0	1	2	3

Figure 9: Indicator numbering

2 Control and data bytes

2.1 Data byte

$R S=0$: Data register is selected (see 3.1)

Input No	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1	DI 0
Bit	DP	A1	A0	D4	D3	D2	D1	D0
Function	DP	Digit address	Data					

Table 3: Data Byte

D0 - D4	Data for the selected digit
A0, A1	Address of digit
DP	Decimal point

Electronic
Components

2.2 Character set

The internal character generator converts D0 ... D4 in 32 different characters:
$0-9, A-F$, blank and special characters.

Figure 10: Character set

2.3 Control Byte

$R S=1$: Control register is selected (see 3.1)

Input No	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2	DI 1	DI 0
Bit	P7	P6	P5	P4	P3	P2	P1	P0
Function				Display brightness control				

Table 4: Control byte

P0 - P4 Display brightness control (see 2.4)
P5 Nonvolatile memory (NVM) write control bit P5 = 0 Enables the temporarily change of the data entry mode and of the display brightness.
$P 5=1 \quad$ The value of the control byte is written into the control register and stored in the nonvolatile memory as default value.

P6 Data entry mode (see 1.6)
$P 6=0 \quad$ right to left
$P 6=1$ left to right
P7 Initial display after power up
P7 = $0 \quad$ Blank digits
$P 7=10000$

Note: Factory default value of control register is binary 11001111 (hexadecimal value of CF). After power up the value of PWM is set to 50%, the display shows "0000" and data entry will be left to right.

2.4 Display brightness control

The brightness of the display is set by P0 to P 4 in the control register.

P4	P3	P2	P1	P0	HEX	DEC	Intensity \%
0	0	0	0	0	00	0	2
0	0	0	0	1	01	1	5
0	0	0	1	0	02	2	10
0	0	0	1	1	03	3	14
0	0	1	0	0	04	4	17
0	0	1	0	1	05	5	20
0	0	1	1	0	06	6	23
0	0	1	1	1	07	7	26
0	1	0	0	0	08	8	29
0	1	0	0	1	09	9	32
0	1	0	1	0	0 A	10	35
0	1	0	1	1	$0 B$	11	38
0	1	1	0	0	0 C	12	41
0	1	1	0	1	$0 D$	13	44
0	1	1	1	0	0 E	14	47
0	1	1	1	1	0 F	15	50
1	0	0	0	0	10	16	53
1	0	0	0	1	11	17	56
1	0	0	1	0	12	18	59
1	0	0	1	1	13	19	62
1	0	1	0	0	14	20	65
1	0	1	0	1	15	21	68
1	0	1	1	0	16	22	71
1	0	1	1	1	17	23	74
1	1	0	0	0	18	24	77
1	1	0	0	1	19	25	80
1	1	0	1	0	1 A	26	83
1	1	0	1	1	1 B	27	86
1	1	1	0	0	1 C	28	89
1	1	1	0	1	$1 D$	29	92
1	1	1	1	0	1 E	30	95
1	1	1	1	1	1 F	31	98

Table 5: Appropriate values for the brightness

3 Data transfer

In the 8-bit mode 10 output ports of the control unit will be used. In the 4-bit mode the number is reduced to 6 .

3.1 Control signals

The access to the data and control register is controlled by the signals CS and RS :

CS	"Chip select"
	With the rising edge of CS the data is written in the internal register
$R S$	"Register select" for data or control byte
$R S=0$	Data is written to data register
$R S=1$	Data is written to control register

See also Timing diagrams in section 3.4.

3.2 8-bit-Bus

Figure 11 shows access by the 8-bit bus. The data or control byte is transmitted by one cycle.

Note: To select 8-bit bus JP2 has to be left open.

3.3 4-bit-Bus

Figure 12 shows access by the 4-bit bus. The process of data transfer is done by two cycles. First lower nibble of data or control byte is transmitted and after that the upper nibble.

Note: To select 4-bit bus JP2 has to be closed.

3.4 Timing diagram

Figures below show the access by 8- and 4-bit bus. The time period for active 1 of CS (Time t2 in figure 11) should be at least $50 \mu \mathrm{~s}$. $\mathrm{t} 1 \geq 0 \mu \mathrm{~s}$.

Figure 11: Timing diagram for 8-bit bus

Figure 12: Timing diagram for 4-bit bus

4 CE Conformity and RoHS

Crameda Intersys AG declares that Codisplay parallel 60 mm, Article No 19061xx, complies to the EMC Directive 2004/108/EC with amendments.

Applied standards:
EN 61000-6-2 Immunity standard for industrial environments
EN 61000-6-3 Emission standard for residential, commercial and light-industrial environments

All PCB boards, components and solder paste are manufactured with leadless technology and meet the requirements for RoHS.

Specifications are subject to change without notice.

Electronic

5 Examples

Example 1 for the 4 digit Codisplay 190164
Remark: The sequence can be used too accordingly for the 2 and 3 digit Codisplay.
Display characters "123.4" in the left entry mode at a brightness level of 68% (For details see table 6):

- Turn power off. If the Jumper JP2 if set: remove it to configure Codisplay for the 8 -bit-Bus modus. Turn power on.
- Apply the initial sequence for temporarily set-up: 55 Hex, RS=1 followed by CS $=\Omega$
- Apply the display data sequences:

01 Hex, RS=0 followed by CS $=\Omega$
22 Hex, RS=0 followed by CS $=\Omega$
C3 Hex, RS=0 followed by CS $=\Omega$
64 Hex, RS=0 followed by CS $=\Omega$

Input	RS	CS	DI 7	DI 6	DI 5	DI 4	DI 3	DI 2		DI 0						
Signal	RS	CS	P7	P6	P5	P4	P3	P2	P1	PO						
	Control		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { displayy } \end{array}$	$\begin{array}{\|l\|} \hline \text { entry } \\ \hline \text { mode } \\ \hline \end{array}$	$\begin{aligned} & \text { write } \\ & \text { NVM } \end{aligned}$	Brightness										Remarks
Step											Hex					Temporarily set-up:
01	1	0	0	1	0	1	0	1	0	1	55	x	x	x	x	- brightness 68\%
02	1	\checkmark	stable state								55	X	X	X	X	$\begin{aligned} & \text { - left entry mode } \\ & \text { (Details see chapter 2.3) } \end{aligned}$
	Control		DP	Digit Address		Data						Digit in left entry mode				
Signal	RS	CS	DP	A1	AO	D4	D3	D2	D1	D0		0	1	2	3	
Step											Hex	Display				
03	0	0	0	0	0	0	0	0	0	1	01					Write
04	0	几	stable state								01	1	X	X	x	character "1" in digit 0
05	0	0	0	0	1	0	0	0	1	0	22					Write
06	0	几	stable state								22	1	2	x	X	character "2" in digit 1
07	0	0	1	1	0	0	0	0	1	1	C3					Write
08	0	\bigcirc	stable state								C3	1	2	3.	X	character "3." in digit 2
09	0	0	0	1	1	0	0	1	0	0	64					Write
10	0	\bigcirc	stable state								64	1	2	3.	4	character "4" in digit 3

Table 6
$0=$ Signal of $<2.5 \mathrm{VDC}$
1 = Signal of $>15 \mathrm{VDC}$
$\Omega=$ Apply control signal RS as described in the figure 11
x = Digits are blank or show "0" depending on the control byte default value stored in the nonvolatile memory (NVM)

Example 2 for the 4 digit Codisplay 190164
Display characters " -13° " on a 4 digit Codisplay 190164 in the right entry mode at a brightness level of 32 \%:

- Apply the initial sequence for temporarily set-up: $29 \mathrm{Hex}, \mathrm{RS}=1$ followed by $\mathrm{CS}=\Omega$
- Apply the display data sequences:

12 Hex, RS=0 followed by CS $=\Omega$
23 Hex, RS=0 followed by CS $=\Omega$
41 Hex, RS=0 followed by $\mathrm{CS}=\Omega$
71 Hex, RS=0 followed by $\mathrm{CS}=\Omega$

Example 3

Configure the Codisplay with a new default control byte value stored in the nonvolatile memory (NVM):

- Initial display after power up "0000"
- Left data entry mode
- Overwrite value in nonvolatile memory
- Brightness: 68 \%
- Apply the initial sequence:

F5 Hex, RS=1 followed by $\mathrm{CS}=\Omega$

